Electron spin relaxation by nuclei in semiconductor quantum dots

نویسنده

  • I. A. Merkulov
چکیده

We have studied theoretically the electron spin relaxation in semiconductor quantum dots via interaction with nuclear spins. The relaxation is shown to be determined by three processes: (i) – the precession of the electron spin in the hyperfine field of the frozen fluctuation of the nuclear spins; (ii) – the precession of the nuclear spins in the hyperfine field of the electron; and (iii) – the precession of the nuclear spin in the dipole field of its nuclear neighbors. In external magnetic fields the relaxation of electron spins directed along the magnetic field is suppressed. Electron spins directed transverse to the magnetic field relax completely in a time on the order of the precession period of its spin in the field of the frozen fluctuation of the nuclear spins. Comparison with experiment shows that the hyperfine interaction with nuclei may be the dominant mechanism of electron spin relaxation in quantum dots. PACS: 72.25.Rb, 78.67.Hc, 78.67.Bf Typeset using REVTEX 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of nuclear quadrupole coupling on decoherence and relaxation of central spins in quantum dots.

Strain-induced gradients of local electric fields in semiconductor quantum dots can couple to the quadrupole moments of nuclear spins. We develop a theory describing the influence of this quadrupolar coupling on the spin correlators of electron and hole "central" spins localized in such dots. We show that when the quadrupolar coupling strength is comparable to or larger than the hyperfine coupl...

متن کامل

Effect of external magnetic field on electron spin dephasing induced by hyperfine interaction in quantum dots

We investigate the influence of an external magnetic field on spin phase relaxation of single electrons in semiconductor quantum dots induced by the hyperfine interaction. The basic decay mechanism is attributed to the dispersion of local effective nuclear fields over the ensemble of quantum dots. The characteristics of electron spin dephasing is analyzed by taking an average over the nuclear s...

متن کامل

Electron spin dynamics in a self-assembled semiconductor quantum dot: the limit of low magnetic fields.

Using the trion as an optical probe, we uncover novel electron spin dynamics in CdSe/ZnSe Stranski-Krastanov quantum dots. The longitudinal spin lifetime obeys an inverse power law associated with recharging processes in the dot ensemble. No hint at spin-orbit mediated spin relaxation is found. At very weak magnetic fields (< 50 mT), electron spin dynamics related to the hyperfine interaction w...

متن کامل

Electron and nuclear spins in semiconductor quantum dots

The electron and nuclear spin degrees of freedom in two-dimensional semiconductor quantum dots are studied as important resources for such fields as spintronics and quantum information. The coupling of electron spins to their orbital motion, via the spinorbit interaction, and to nuclear spins, via the hyperfine interaction, are important for understanding spin-dynamics in quantum dot systems. T...

متن کامل

Spin Dynamics of Electrons and Holes in p-Doped InAs/GaAs Quantum Dots

We have investigated the electron and hole spin dynamics in p-doped semiconductor InAs/GaAs quantum dots by time resolved photoluminescence. We observe a decay of the average electron spin polarisation down to 1/3 of its initial value with a characteristic time of T∆ ≈ 500ps. We attribute this decay to the hyperfine interaction of the electron spin with randomly orientated nuclear spins. Magnet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002